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1 Introduction

In this paper we propose 2 utilization of the algebraic approach to
non classical logic, as devised by R. Sikorski, H. Rasiowa and other
authors, as a first step towards this general foundation of fuzzy set
theory. In fact, it turns out that the principal objects of investiga-
tion of fuzzy set theory, such as the fuzzy algebras, the fuzzy graphs,
the similarity relaticns, etc. ..... , are models (in the sense of the
above cited authors) of a first order language (see also th). Conver-
sely, we believe that, be providing natural and non "ad hoc" models,
fuzzy set theory can give new suggestions and tools to nonclassical lo-
gic.

Bv defining a suitable concept of morphism, we give the class of the
non classical models (in this paper "fuzzy models") of [ a structure of
category F( L ). We prove that such a category has direct products. More
over the concepts of congruence and quoctient are defined and the usual
nomomorphism theorems are proved. Also, suitable notions of reduced pro

duct and ultraproduct are given.

In particular we obtain that, for example, the fundamental notions of
morphism, congruence, quotient, direct and reduced product, ultrapro-
duct are given for the fuzzy algebras.

All these notions are new.

We prove that duotients, direct products, reduced products, ultrapro-
ducts preserﬁe the first order properties.This enables us to extend
Lowenheim-Skolem Theorem to a very large class of non classical logics.

Note that the above operations are not generalizations of the analogous
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classical ones. For example, the direct product of a family of classi-
cal models is, in the category F(L ), a boolean valued model.

If I has only a monadic predicate, then the fuzzy sets individuate a
full subcategory ¥ of F(L ). Such a category is very different from
the early defined categories of fuzzy sets. We prove that, in this ca-
se, F has initial objects, terminal objects and pullbacks while it has

not exponentials and a subobject classifier. Thus F is not a topos.

2 Valuation structures

In the sequel N denotes the natural number set and M=N\/{0}. A type for

a valuation structure is a family of disjoint sets E, ﬁ, EO’ Cl,...,En,

such that v,f EEO
and universal quantifiers, respectively, the elements of Cn’ for neM,
n-ary connectives. A valutaticn structure or generalized algebra (see
[12] and [14]) of type (E, E’(En) neM) is a pair V- (V, I), where V is

a set and 7 is a map defined in EUU LJ(ég En) such that:

M
a) to every Eean, I associates an n-ary operation in such a manner
that (V, A,0,1) is a semilattice with zero O and unity 1, where A=ZI{ },

0 =7 (f) and 1=1 (v).

b) to every qeE (qeU) I associates an increasing (decreasing) map q=I(q)

——

from a class Dq of nonempty subsets of V into V.

Observe that the monotonicity of the quantifiers is not required in [12}
and [1&]. In our paper such an hypothesis is essential only in the
proofs of Proposition 9.1 and Proposition 9.2. The class Dp is called
the domain of q. A valuation structure whose domains of guantifiers are
equal to P (V) is called complete.

In the sequel we set 5=E\VIG, E= {1'(5)/555}, U= {1'(5)/556} Q=E U U,
Cn= {I‘(E)/Zegn}, C= LJCn. We denote the valuation structure by (V,C,Q),
also.

If (V,I) and (V',I ') are valuation structures of the same type, then
a homomorphism k from (V,I ) to (V', I ') is a homomorphism of the alge-
braic structure (V,C) to (V',C') such that, for every aea and Xqu,

s AE 52. Elements of E and 6 are called existential

L XS



k(X)eD , and

(2.1)  k(q(X))=q'(k(X))

where q= I(E) and q'= I'(a). If k is the identity embedding then (V, I)
is called a substructure ot (V', I').

A congruence of a valuation structure (V,C,Q) 1s a congruence ¢ of the
algebraic structure (V,C) such that, for every qeE (qeU)and X,Y’qu,

(2.2) [XJWQ hﬂw implies [q(X)]w € [q(Y)]tp ([q(X)]wh[q(Y)lw)
where, for every 2 & V, [Z]W = {[z]w/zez}. The quotient of (V,C,Q)
with respect to ¢ is the valuation structure (vr, 1')= (V',C',Q') such
that (V',C') is the quotient of (V,C) and, for every qeqQ, Dy = {[Ylw/
YeD } d q'(|X = X .

€ . and q" ([ ]w) la(x) ]w

1ir <(Vi, Ii)}ie is a family of valuation structures, then the product

I

(v,I)=(v,Cc,Q) is defined by assuming that (V,C) is the direct product
i . 5C. ) >

of the fam11y<:IV1, 1)2361

Moreover, for every Je@Q, q=I(a) is defined by setting:

of algebras.

(i) Dq equal to the class of the subsets of V of type [ Xi where,

for every iel, X.eD (qg.= I.(q)) hed
- ivq, 3 i

(i1) q(|1X,) =< @, (X)) >,
. i i1 ie
iel

Moreover, the complete product is defined by setting:

I’

(iii) Dq = {X € V/ for every icl pi(X}qu_}
(Wv) q(X)=<q (p (X))>, .. *

where pi: v =+ V:.L denotes, for every ieIl, the ith-projection. It is im-
mediate that the products and the complete products are valutation
structures.

If S is a set and V =(V,C,Q) is a valuation structure, then a n-ary fuz
zy relation or V -relation is a map r:Sn + V from s” to V. If n=1 then

r is called fuzzy subset or V -subset of S. Sometimes, in literature,

r is called fuzzy set or V-set on 8, [9], [10], [17].

3 Fuzzy models of first order languages.

A generalized first order language [ is a first order language (in the

classical sense) with a type for a valuation structure. Then a genera-

lized first order 1anggage %E an“?zgfref system L = Kimgm M’ (ﬁm)meM’

~ .on
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E, U, (C) _} of disjoint sets. For any meM, the elements of F_ and
_ m meM™ . m

of Rm will be called m-argument fuctors and predicates respectively.

Moreover we set E=LJ§& and E=LJE£. Terms,open formulas and closed for-
mulas are defined as usual. In particular if « is a formula and X8 va

— e
riable, then gx is a formula for every qeQ. I denotes the set of

0
i
formulas, I the set of closed formulas and Ln the set of formulas

whose free and bound variables are in {xl,....,xn}.

We write o (xl,...,xn) to denote o ¢ Ln' A fuzzy model or realization

M =(D,v,I ) for L is a tern such that D is a set (the domain), V is a

set (the valuation set) and { (the interpretation) a map such that V

with the restriction of I to the type E\v)EkJ(LJEﬁ) is a valuation
structure V(¥ ). Moreover I assoclates

- to every e Em an m-ary operation f=I (f) of D

- to every r

= {I(F)/FeF = I(r)/7eR = = "
We set F_ = {I(f)/feF }, R = {I(r)/reR}, F UFm and R URm In other

e Em an m-ary V(M)-relation r=I (r)

words a fuzzy model is determined by a classical algebra A(M) = (D,F),
a valuation structure V = V(M=(V,C,Q) and a set R of V-relations de-
fined in D.

The valuation of the formulas of L with respect to a fuzzy model ¥ is
defined as follows. If t(xl,...,xn) denotes a term whose free varia-
bles are in {xl,...,xn}and ir dl,...,dn € D, then the value t[dl,..,dn]
of £t in dl""’dn with respect to M is defined as usual. If o ¢ Ln then

V(M , afd ,...,dn]), the valuation of a in dl,...,dn with respect to M

is defined by setting:
(i) V(¥ ,;(tl,...,tp) [a,,..00a D = vt [d,..00a],...,
tp [dl,;..,dn])
(11) V(¥ Le(ays...say) [dl,....,dn] = e(V(M ,a [dl,...,dn]),
....,v£ Mo [:dl,...,dn]))
(1ii) V(¥ ,qx B [dl,...,dn]) = q ({ V(¥,8 [dl,...,dh_l,d,dh,....,
dn])/ch})

for every p,seN, ;eﬁp, EEES, t

al,....,aS,B € lh, q e 6, he{1,...,n}

l""’tp terms,

Note that if V(M) 1is not complete, then the valuation can be undefined

for some formulas. If this is not the case, then the fuzzy model is cal
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led completely wvalued.

If v=(V,C,Q) is a valuation structure, then V- system of axioms is
any fuzzy subset T : L+ V. A model of T is any fuzzy model ¥ such that
V is a substructure of V(M ) and V(M ,a). = T(n) for every a € L.

A model of a set T of formulas is a fuzzy model such that V(M ,n)=1

for every a & T . A class of fuzzy models is axiomatizable if it is

the class of the models of a suitable set of formulas,

Observe that if the valuation structure is the two elements booclean al
gebra, then the above definitions give the classical semantics. If the
valuation structures. are Heyting, Lukasiewicz or modal algebras, then
we obtain the semantics for the corrispondent first order logics.

In all this cases the quantifiers are interpreted as the least upper
bound and the greatest lower boundoperators . But, it is possible to
give several other interesting definitions of the quantifiers. For
example, we can define a universal quantifier by setting

1 if X = {1}
(3.1) q{X) = {

0 otehrwise
In the framework of fuzzy set theory interesting definitions of quan-
tifiers are possible that are related with the entropy and energy con-
cepts (see [3], [5]). For example, if in the valuation structure a com
plementation and an equivalence are defined, then we can define the
existential quantifier g= I (a) by setting

a(X) = sup ({v «> ~ v/v e X}) Xc V.
Then 1t is reasonable to assume the valuation of the formula EXA as
the "degree of fuzziness" or "entropy" of the predicate A(x). Obviously
we can also express this entropy by the formula ]x(A “«+ ~ A)
Recall that a fuzzy algebra (see [1], [4], [6],[8],[10], [13]) is a
fuzzy subset f:A -+ L of an algebra A, with L semilattice, such that
(3.2) f(h(dl,...,dn)) 2 f(dl)A s w05 A f(dn)
for every n-ary operation h of the algebra A and dl,....,dne A.
Fuzzy algebra concept is useful to investigate about the lattice of the
subalgebras of a given algebra. Indeed a fuzzy subset f:A - L is a fuz-

zy algebra if and only if every o-cut Ca= {xeA/f(x)»a} is a subalgebra
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of A. Then it is possible to identify the fuzzy algebras with suita-
ble families (C ) of subalgebras of A.

a ael
The following proposition shows that the fuzzy algebras are fuzzy mo-

dels of a suitable theory.

Proposition 3.1 The fu%zy algebras are the fuzzy models of the system
of formulas
(B.B)Vxl...Vxn (I’(Xl)/\....t\r‘ (xn)) > r(s(xl,.

spect to sultable valuation structures. In other words, the fuzzy al-

TIU AR SEF_ with re-
n n

gebra concept is axiomatizable.

Proof. Let M be a fuzzy model of (3.3) such that, for every thDq
from q(X) = 1 it follows X = {1} and for every u,v € V from ugv it
follows that c(u,v)=1, where g=I( ¥) and c=I(+). Then it is immediate
that Mis a fuzzy algebra.

Conversely, let f:A - L be a fuzzy algebra and let ¥V be the valuation

structure obtained by interpreting -+ as the binary operation ¢ defined

by 1 if ugv

clu,v) = {
0 otherwise

and the quantifier V¥ by the map g defined in (3.1). It 1s immediate
that the fuzzy algebra becomes, with respect to such a valuation struc-
ture, a model of (3.3).

There are particular fuzzy algebras that are interesting for code theo-~
ry, namely the free, pure, very pure, left unitary right unitary fuzzy
semigroups (see [1], [6], [7], [8]). They arecharacterized by the pro-
perty that the corresponding cuts are free, pure, very pure, left unita
ry, right unitary subsemigroups of the given semigroup, respectively.
The following proposition shows that these classes of fuzzy semigroups

are axiomatizable.

Proposition 3.2 The free, pure, very pure, left unitary,right unitary
fuzzy semigroups are the models of the system of axioms formed by the
formula

(3.4) Vxl ng <;(X1)A ;(X2) —*;(xl- xz))
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and, respectively, by the formulas

(3.5) \lelviE(;(xl'XZ_)_A ;(xz.xl)A;(x2) —*F(xl)) (free)

(3.6) Vxl (r(x;) — r(xl)) ; mneN (pure)

(3.7) ¥x, sz(?ixl- x,) A E(xe-xl) — r(x,)) (very pure)
(3.8) V”ﬁ_ Vx2 (Z(xz-xl)A E(Xa) ———*z(xl)) (left unitary)
(3.9) ¥x, \/x2 (r(xl»x2)A r(xz) -—-*r(xl)) (right unitary)

Proof. As in Proposition 3.1.
i The category of the fuzzy models.

Now we define the category F(r ) of the fuzzy models of the language L.

The cbjects of this category are the fuzzy models of L , a morphism
from ¥ = (D,V, I ) into M'=(D',V', T ') is a pair (h,k) of homomorphisms
from A(M ) to A( ¥') and from V(M ) to V{ M'), respectively, such that

the following diagram commutes

D__.._h—_-) 'n
. D
by, !
(4.1) r 1 . l r

V ——— V!
for every ;‘Eh’ where r=I (r), r'= I'(r) and h(dl""’dn) is (h(dl),...
..,h(dn)) for every (dl,...,dn)e D". The product of two morphisms (h,k)
and (h',k') is the morphism (hh',kk').
A morphism (h,k) éuch that h and k are both menomorphisms, epimorphisms

or isomorphisms is called moncmorphism, epimorphism or isomorphism, re-

spectively. Note that if the equality = 1is an element of R2 and it is

classically interpreted, then the commutativity of (4.1) implies that

h is injective. If h and k are the identity embedding, then ¥ is called
a submodel of M '. A morphism is elementary if

(4.2) Vv(M"', u[h(dl),...,h(dn)])=k(v( M, a[dl,...,dnl)) for every o ¢

L and 4 .54 € D. If(h,k) is an elementary monomorphism, then M’
n n ?

10
is called an elementary extension of M . If h and k are the identity

embedding then ¥ 1is called an elementary submodel of M.
The following proposition gives a condition in order that a morphism is

elementary.

Proposition 4.1. Let ¥ and M ' be two completely valued fuzzy models

and (h,k) a morphism from M to M.
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Moreover, assume that for every formula B ¢ LI],ESE, ief{l,...,n} and
dl,...,dn € E
(4.3) V( u',aqx, B[h(dl),...,h(dn)]) =q'({v( u", B[h(dl),...

., h(di_l),h(d),h(di+1),...,h(dn)])/d.eD})

Then (h,k) is elementary.

Proof. We prove (4.2) by induction on the complexity of a. Suppose
; ic, i.e. [ & BT ith r ¢ R_and -
that o is atomic, i.e. of type r(tl, 4 p) with r ¢ Rp an tl, ,tp

terms. Since h is a homomorphism, we have, for every d "dn e D and

5%
ief{l,...,p}, ti(h(dl)"'"h(dn))zh(ti(dl"'"dn))’ wiih obvious_mea-
ning of the symbols. Then, by the commutativity of (L.1), V (M',r(tl,..
..,tp) [h(dl),...,h(dn)] )} =
r'(h(tl[dl,...,dn]),...,h(tp [dl,...,dn])) -
k(r(tl [il,...,dn],...,tp (dl,...,dn]))
K(V( M ,r(tl,..._._,tp) {dl,...,dn])
Suppose that «=c (al, ..... ,ap), then
v( M, a[h(dl),...,h(dn)])=c'(V( M ',al[h(dl),...,h(dn)]),....
N ¢ M',up [h(dl),...,h(dn)]))=c'(k(V( M ,al[dl,...,dn]),....
e k(V( M ,ap[dl,...,dn]))=k(c(V( M 2% [dl,....,dnj) .......

SYCH e [dsed 1) = k(WO H, afd),.d D).
Finally, suppose that *=qx, B, then by (4.3) and the inductive bypothe-
sis we have
k(V( M,Exi Bla,..sd 1) = k(a({ V(M , 8 [d ,.00,d, 50,4, see.
....,dn])/d e D}))=q" ({k(V( ¥, B[dl,...,di_l,d,di+l,....,dng)/dxeD})=
g ({v¢( f ',B[h(dl),...,h(di_l),h(d)’h(di+1),...,h(dn)])/d e D}) =
V(O M',ax, B[h(dl),...,h(dn)])
This completes the proof.

Proposition 4.2 Let M be a completely valued fuzzy model and (h,k) a
morphism from M to a fuzzy model M ' with h surjective. Then ¥ ' is com

pletely valued and (h,k) is elementary.

Proof. It suffices to repeat the proof of Proposition 4.1. The only dif-
ference is that we have to prove that ¥ ' is completely valued. We con-
fine ourself to observe that if {V(¥ |, B[dl,...,di_l,d,di+l,...,dn])

/& € D} is in Dq, then k({V( M ,B[dl,....,di_l,d,di+1,...,dn])/d,eD})
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is in Dq" Moreover, by inductive hypothesis,
k({(V(M ,B[dl,...,di_l,d,di+1,...,dnJ)/d gD}) =
! , . ‘ ;
{V(M' ,a[h(dl),...,h(di_l),h(d),h(dﬁl),...,h(dn)|)/d e D})
{v(M ,a[h(dl),...,h(di_l),d',h(di+1),...,h(dn)] )/d' € D'}

This compeltes the proof.

5 Direct products

In order to show that the category F( L } of the fuzzy models has

direct products and to give an interesting example of elementary exten-

sion, we recall some definitions given in [17]. If <ﬂ4i>iEI is a family
= I P

of fuzzy models of L, Mi (Di,Vi, i)’ then we call product (complete

product) of the family the fuzzy model M= (D,V,I) such that A(M) is the

direct product of A( ﬂ4i) ie V(M) is the product (the complete pro

I’ p .
i i
s =<t -
duect) of V(A&) 5 and r(dl, ,dn) rl(dl, ,dn)>-iE

el I

1 n - — =
for every d;, =<d> "’dn:<df>ie elements of D=||Di,.r*sR and neM,

I"iel’’ I
where r= I (r), ri=IiCr). If all the components Mi are equal, then we

call M power (complete power, reipectively). We denote a product and a
complete product by _Tr' Mi and TT- Mi’ respectively, Observe that the
product (and the complete product) of a family of classical models is

not a classical model and it is not with classical equality. Such pro-

ducts are boolean valued structures.

Proposition 5.1 Let<fMi)i€I be a family of fuzzy models of I, ¥= || My

the complete product and P :TT Di——* Di’ pi:TTVi-—» Vi the ith-projec-
tion maps. Then M 1is the direct product in the category F (I) with re-

spect to the family <(pi,p]!_):>ie of morphisms.

I
Proof. To prove that (pj,p'j) is a morphism, it suffices to observe that,
by definition, for every Xqu
T(q(x)) =p! (<al(pi(X))D, ) = q. (pH(X))
pifa(x)) = p; (<a;5(p; 1ex’) T 9y (P
and that, if d ,..
1 n 1 n
! d.y...,d =p! LdL .. ,dL ). zr.(d,,...,d,)= r, o
pj(r( 1oeee8)) pJ(<rl(d1, 4> ) rJ(dJ, ,dJ) rJ(pj(dl), 2D
(a ).
n
Let u '=(D',V', I') be any fuzzy model and, for every i eI, let (hi,ki)

.,dn are elements of D,
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be a morphism from M' to Mi. We have to prove that a morphism (h,k)
exists such that the following diagram commutes

(h,k)

1

M —_— M
(5.1) ‘hi’ki)\ /(pi,p'i)
M,
1

Now, define h:D—D and. k:V'—V by .setting h(d)=<hi(d)7i€I,k(v)=
k. (v)> . for every deD' and veV'.
i iel
It is obvious that h is a homomorphism from (M') to A(M ). To prove
that k is a hananorphismfrom V(M') to V(¥ ), it is sufficient to observe
: = "k = =< ! -

that if X € D, then Alk(X))=<a, (ps (k(X)))D> . | <qi(ki(x))>i€I k(q' GO 1
k(q'(X)).
To prove that (h,k) is a morphism observe that:

1 = 1 =
k(r'(d;,...,d)) =<k (r (dl,...,dn))> ¥eg
=<ri(hi(d1),....,hi(dn))>i€I =r(h(dl),...,h(dn)).

The commutativity of (5.1) is immediate.

The fellowing proposition is proved in [17]. It shows that, differently
from “heclassical case, direct products of fuzzy models preserve first

order properties.

Propcsition 5.2 If <M.i>'ieI is a family of completely valued fuzzy mo-
dels, then its product (complete product) ¥ is completely valued and

_ I i
(5.2) V(Mald,...,4 1) =<V( Mi,l[dl, ceesd 10D

for every formula ce L and d_=<4d.).
n 1 iile

iel
...... ,d =<d? >,
n 1 ig

elements of D.

The following proposition shows that the subcategories of the fuzzy al-
gebras and of the free, pure, very pure, left and right unitary fuzzy

semigroups have direct products.

Proposition 5.3 The product (complete product) of a family of fuzzy al-
gebras is a fuzzy algebra. The same holds for the free, pure, very pure left uni

tary, right unitary fuzzy semigroups.

Proof. It follows from Proposition 3.1, Proposition 3.2 and Proposition

5.2,
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Let I be a set and M =(D,V, I) a fuzzy model. Then in the following
proposition we identify the elements of D (of V) with the correspon-

ding constant maps from I to D (to V respectively).

Proposition 5.4 Let ¥ be a completely valued fuzzy model, I a set and
M= AlI the power (the complete power) of M with index set I. Then

¥ 'is completely valued and
(5.3) v( M',a[dl,...,dn])= v( M,a[dl,...,dn])

for every formula uz;Ln and dl"""dn € D Thus every complete power

of M is an elementary extension of M

Proof. Obvious.

Observe that the power M ' is not an extension of ¥ . Indeed, if k
: . I ;
is the natural embedding of V into V', then from X Euq we cannot infer

.

that k(X)eD

1

6 The category of the fuzzy sets.

Suppose that [ has one monadic predicate and that the connectives are
A, V, 0, 1. Then the class of the fuzzy models of L whose valua-
tion structure is a lattice coincides with the class of the fuzzy sets.
We denote by F the full subcategory of F(r) individuated by such a
class. F is different from the analogous categories of fuzzy sets al-
ready known in literature (for references see [11] and [16]). For ex-
ample F differs: from Goguen's category F(L) since in F(L) one refers
to the prefixed lattice L only. Moreover, Goguen's definition of mor-
phism h from a:A + L into b:B -+ L reguires that f£(x)gg(h(x)) and not
Just that f(x)=g(h(x)).

Also, radical differences exist with respect to Eytan's category Fuz
(L) and Higgs topos Sh{(L). For example, in such categories morphisms

are fuzzy maps. All these categories are not equivalent.

In the sequel we call classical an object of F whose lattice is the one
element degenere lattice {1}. Then by identifying every set X with the
classical fuzzy set f:X » {1}, the category Set can be considered as

a full subcategory of F. Note that there is no morphism from a clas-
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sical object into a nonclassical object. Indeed, there is no homomor-
phism from {1} into a nondegenere lattice L.

Instead, if b:B + {1} is classical and a:A—L is any fuzzy set, then
every map h:A B defines a unique morphism from a to b.

The following proposition gives some further informations on the cate-

gory F.

Proposition 6.1 The category F has direct products, an initial object O,
a terminal object 1 and pullbacks. Moreover F neither has exponentials
nor subobject classifiers and therefore is not a topes.

Proof. S8ince the direct product of a family of lattices is a lattice,
from Proposition 5.1 it follows that F has products. The fuzzy set
£:¢0-{0,1} is an initial object,a fuzzy set of type f:{a}l »{1} is a ter-
minal object.

Let a:A =+ La, b:B -----PL_b and c:C -*LC be fuzzy sets and (h,k), (h',k")
two morphisms from a to ¢ and from b to ¢, respectively. Then it is
matter of routine to prove that, if S={(x,y)e AxB/h(x)=h'(y)},
L={(x,y) LSXLb/k(X)=k'(y)} and s((x,y))=(a(x),b(y)),then s:5 » L_ is
the pullback of (h,k) and (h',k').

Assume, by absurd, that a subobject classifier Q exists.

Since a classifier has elements t:l— Q, & is a classical fuzzy set.
Now, let a:4 + [0,1] be a fuzzy set such that a(A) is the set U of the
rational numbers of [O,l]. Moreover denote by a:A—U the fuzzy set
defined by setting a(x)=a(x) for every x e A. Then the identical embed~
dings define a monomorphism m from a to a. We claim that there is no

morphism (h,k) such that the diagram

g—— 1

(6.1) ml &

Gp——t ]

(h,k)
is a pullback. Indeed if (6.1) is a pullback, since Q is classical

and (6.1) commutes, we have also that

g— 1

(6.2) i ltg
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commutes, where i is the identical map. Then a morphism (h',k') from
a to a exists such that

a

(6.3) X i\(",k‘)

commutes. It follows that h' is the identical mapping. Moreover, sin-

|
=

ce k'(a(x))=a(h'(x))=a(x)=a(x), the morphism k':[0,1]— U is surjec-
tive. This contradicts the fact that there is no increasing map from
[0,1] on U. Thus (6.1) is not a pullback and therefore F has no clas-
sifiers.

Assume that F has exponentials, let a:A———*La be nonclassical and

b:B » Lb a fuzzy set such that two morphisms (hl,kl) and (h2,k2) from
1xb to a exists with klﬁkz. Then an "evaluation" morphism e=(h,k)
exists such that

e
abX b ——— 3

(6.4) g “I M,@

1xb

commutes for a suitable morphism gj:l —-*ab. This means that ab is
classical and that
kl(l,v)=(1,k(i(v)))=(l,k(v)) and kz(l,v)=(1,k(i(v)))=(1,k(v)) for

every vel This contradicts the hypothesis kl#kz.

b
7. Congrueces and. quotients

Let ¥ be a fuzzy model, @ a congruence of A(y) and y a congruence of
V( M ). Moreover assume that, for every r-e:Rn and dl,....,dne D

. = g dn Py = Y Gea
(7.1) d1 8 dl, ,dn g Ty r'(dl, ,dn) lpr(d 1 ,dn) Then
the pair (8,y) is called a congruence of ¥ . The quotient M'=M /(©,¢)ofM
is defined by setting A( M')=A(M)/0, V( M')=V( M)/¥ and, every ;eﬁn and

d ....,dne D

l’
(7.2) r'([d,1gs-venfa 1) = [r(dl,...,dn)]w
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where r'=1"(;). The above defined concepts of congruence and quotient
are not generalizations of the usual ones. For example, let r be the
classical interpretation of the equality = in a classical model. More-
over, assume that ¢ is nondegenere. Then 6 coincides with the classi-
cal equality.

As in the classical case, we can prove the homomorphism- thecrems.
Proposition 7.1 If (h,k) is a morphism from a fuzzy modelM to a fuzzy
model M ', then the pair

6= {(d,d")e D*/B(d)=h(dD} , ¥={(v,v e V/k(v)=k(v")}

defines a congruence of M , the kern of (h,k).

Proof. It is obvious that © is a congruence of A(M). To prove that
¥ 1is a congruence of V(¥), let aezﬁ let X and Y be elements of Dq
and assume that [x]lp c [Y]w. Then it is immediate that k(X)€ k(Y).
It follows that k(g(X))=q'(k(X))sqg'(k{¥))=k(q(Y¥)) and therefore that
k(q(Xaa(¥))=k(q(X))ak{q(¥))=k(q(X)). This proves that [q(X)Aq(¥)]=
[q(X)}w and therefore that [q(X)]wA[q(Y)]w=[q(X)Aq(Y)]wz[q(X)]w._IE

conclusion [q(Xﬂdﬁié(Y)]w . In a similar manner one proceeds if gqeU.

This proves that § is a congruence of V(¥ ). To prove that (0,9) is a

congruence of M let ;ezﬁ, dl’ ..... ,dn,di,...,dﬂsD and assume that
E dT;uiws = ' « Th =h(d4d’ £% e ( = ' -
dl Odl’ ’dn A d n en h(dl) ( l)’ 3 h‘dn) h(dn) and therefo
re, by the commutativity, k(r(dl,...,dn))=r'(h(dl),---,h(dn))=r'(h(d‘l),
....,h(dé))=k(r(di,....,dﬁ)). It follows that r(dl,....,dn)zwr(d‘,..

..,dé).

Proposition 7.2 Let (@,¢) be a congruence of the fuzzy model M and
the corresponding quotient. Then the maps h and k defined by setting,
for every deD and wveV h(d)=[d]e p k(v)=[v]wconstitute an epimorphism
(h,k) whose kern is (0,y).

Procf. Let qeQ, a=1(q), q'= I '(g) and Xqu, then from the definition
of quotient it follows that k{(X) is in Dq.. Moreover q'(k(X))=q'([X]w)=
[q(x)]w = k(g(X)). Finally, if Eeﬁn and d_,....,d eD, then

smEE = s = ! w wie g LGk .
k(r(a,, sd N=letdyeee,a )] = r (fadgsereala T

Proposition 7.3 Let M be a completely valued fuzzy model and (0,y) a

L4
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congruence of ¥ . Then the relative quotient M ' is completely valued
and A

(7.3) V( M', q[[dlje,....,[dnjej)= [v( u , a[dl,....,dn']]w

for any formula o € Ln and dl,....,dne D.

Proof. It follows from Proposition 4.2 and Proposition 7.2.

Proposition 7.4 Every quotient of a fuzzy algebra (of a free, pure,
very pure, right unitary, left unitary fuzzy semigroup) is a fuzzy al-
gebra (a free, pure, very pure, right unitary, left unitary semigroup,

respectively).

Proof. It follows from Proposition 7.3, Proposition 3.1 and Proposi-

tion 3.2.

Proposition 7.4 shows that in the categories of the fuzzy algebras and
of the free, pure, very pure, right unitary, left unitary fuzzy semi-
groups the concepts of congruence and quotient are definable in a sui-

table manner.

8 Reduced Products and Ultraproducts.

Let L A be the classical first order language with equality whose
function symbol set is C and with a unique monadic predicate A. Then
we say that a quantifier q of a fuzzy model ¥ is

defined by a formula aq(xl) of L A if, for every Xe Dq,
(8.1) (v, x) E aq[v]d-=> v=q{X)

where ( V,X) is the model of 1JA with domain V interpreting ceC by
I(E)and the predicate A by X. It is easy to see that in the known lo-
gics (classical, intuitionistic, many valued, modals, etc...) the quan
tifiers are defined by suitable formulas. For example the existential
quantifier is defined by the formula

[sz(A(xz) - X 3 x2]A [ng(A(XQ) - x3>x2) — Xy

Even the quantifiers given in Section 3 are definable.

>x.1.

If I is a set, then a d-filter is a pair ( F, F') of filters on I
such that F € F' and F' is a ultrafilter. If F is a ultrafilter,
i,e. if F= F ', then ( F, F') is called ultrafilter and it is deno



136

ted by F
Proposition 8.1 Let < ¥ i> 1el be a family of fuzzy models such that
for every qeQ there exists a formula oz of LA defining ;= Ii(a) for

every ieI. Moreover let ( F, F') be a d-filter and © and y the rela-
. . . . dr=<d? ’
tions defined by setting, for every d <di> SeT! di>ieI in TTDi

=< ; Ty >, in| |V,
and v=<v.,> 2 v Vidier nTT i

i"ie

(8.2) d=_d' e {iel/d,=d!} ¢ F
0 i 1

(8.3) vz, v' 4= {ieIl/v =vile F
g i i

Then (0 , ¢) is a congruence of the product M = (D,V, I) such that in
the corresponding quotient the quantifiers are defined by the same for

mulas.

Proof. The hard part of the proof is to prove that if asﬁ (aeﬁ) and
= 1 € ¥= : (X0 < [<aq. (Y., i-
x = [T] Xi% Y [TTY11w then [<ql(Xl)>1€I]w\[<ql( 1)>1eI] (respecti
> >
vely [, (X2, 1, 3 [<a (¥, 1, ) where <X, ; and<¥.>,

AB

are two families such that Xi,Yiqu for every ieIl. Now, let L be
an extension of I A obtained by add%ng a new monadic predicate B. We

set a- =aa(A) to enphatize the dependence of aa from A and denote with
a(B) the formula of £ obtained by substituting in aq every occur-

“AB
rence of A by B. Moreover, to every structure (Vi’ci) we can associate

a model (Vi,ci,Xi,Yi) of the language L by interpreting ey by

AB
ci=1'(ci), A by Xi and B by Yi' Then it is immediate that
; Y LLX. Y, _(B .

(V,4C. X, 0¥ )E a q(A) [q(xi)] and (V,,0;,%;,Y;)F uq( ) [q(Yl)]

Since qy is increasing, we have, for every isI,(Vi,Ci,Xi,Yi)t=

(Cv/x (A(x)) =~ B(x))) » X, § %,) [q(xi),q(Yi)]

Now, if (V,I) is the ultraproduct of the family <(Vi,ci,xi,Yi)>iel,

it is immediate that
(V,I)F'aq(A) [a] where a

(V,I)F=dq(5) [b] where b

Bg(Xi)7 isI]w
katy)> 11,

Moreover
(8.4) (V, INE ((Vx (Ax)) > B(x)))) » %3¢ x,) [a,0]
Now, since I (A)=X and I (B)=Y, from X€Y and (7.4) it follows that

agb. In the same way we proceed if aeﬁ.
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The quotient of the product of a family of fuzzy models via the con-
gruence associated to a d-filter (a ultrafilter) is called reduced
product (ultraproduct, respectively). If all the components M 5 of
the family are equal, then reduced products and ultraproducts are

called reduced powers and ultrapowers respectively.

Proposition 8.2 Let ¥ be the reduced. product of a family<¥; > el
of completely valued fuzzy models with respect to a d-filter ( F, F').
Then M is completely valued and, for every formula a eLn and dl""'
i dne D, '
(8.5) v( Ma[la.] ... (a1 D=fevim,, afal,...,aZP>. ]
? 1" e’ *"n" o i? 1° aieCy
where © and V¥ are the congruences associated to (F,£ ')
ca,d =<adty
n n

i
and d, = <d4d.>.
1l ie

1 I? iel

Proof. Since M is a quotient of the product | Mi’ from Proposition
5.2 and Proposition 8.3 it follows that M is completely valued. Moreo-

ver, by the same propositions,
V(M ,u[[dl]e,...., [dn;]e]) = v(T] Mi’ a[dl,....,dn] )jw =

- i 4 -
[cvim 5 ald], .. a ] )>i€IJw

Observe that a . ultraproduct of a family of fuzzy models with classi-
cal equality 1s with classical equality, too. Moreover a ultrapro-
duct of a family of classical models 1s a classical model. Assume that
v( M i) = V for every i1tI and that a suitable topology is defined in

V . Then we obtain Chang and Keisler's definition of ultraproduct [2] by
identifying two elements of the ultrapower V I/lf'with the same limit.
In the following proposition we identify every element deD(veV) with
the class of equivalence cof the map constantly equal tc d(to v, re-

spectively).

Proposition 8.3 Let M be a completely valued fuzzy model with defina
ble quantifiers, I a set and { F, F') a d-filter on I. Then the rela-
tive reduced power M ' is an elementary extension of ¥ and,,for every

a E-En, A seeesd € D.

(8.6) V( M, a[dl,....,dn]) =v( M, u[dl,....,dn])
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Proof. Obvious.

9 A Lowenheim-Skolem type theocrem.

The cardinal Uﬂ of a fuzzy model ¥ is the cardinal of the relative

domain. The guantifier cardinal p(M) is the minimum cardinal Y such

that, for every qeQ, Xqu, there exists Yqu such that YeX,|Y|¢ yanda(Y)=
q(X). Obviously p( M)¢|V]. If Q={inf., sup.} and V( M) is well orde-
red, then p( ¥ )=1. If V( M) is the real number interval [0,1]then

p( ¥)= w. The cardinal| L|is the cardinal of L .

Proposition 9.1 Let M' be a completely valued fuzzy model. Then, for
every subset X of the domain D' of M ', there exists an elementary

submodel M =(D,V,I) of M' such that Xe€D, V(M )=V( M') and
(9.1) X< mlc| |Xl+]z]+q (M)

Proof. Let Be I , qeQ, d_,...,d e D' and i € {1,....,n}
n

l’
Moreover, set, for every deD',

£(a) = v M, gla,....d, ) IEEREFLWD
Since M ' is completely valued {f(d)e V'/de Dq} e D

.,dn)qu, such that

’d’di+

and there exists a subset S(B,a,i,dl,..

(1) S(B,a,i,dl,....,dn)g;{f(d) V'/deD'}

(11) 508,851, 50+ 0-58 D¢ pCH 1)

(1ii) v( u', ax, B[dl,...,dn])=q (8B syl d .,dn)).

l,n..

Also, it follows that there exists a subset

X(B’q’i’dl"""dn) of D' such that
£(X(B,a,1,d 5.0 0+,d )) = S(B,q,i,d,,....,d ) and
]X(B,a,i,dl,...,dnns p(Mm).

We set, for every subset Y of D', C(Y) equal to the subalgebra of
A( M') generated by Y and the set

Lj{x(s,a,i,dl,..
Obviously, |C(Y)[¢[Y|+] z|+p( M'). Moreover, set
Xy=X,X =C(X__.), D=UJX . It is immediate that D is the domain of a sub
algebra of A( M ') such that [D[g|X[+|L |+ p ( M'). Let M = (D,v, I)be
the submodel of M' such that A( M) is the subalgebra of A( M ') with

..,dn)/neN,Be Ln,qu, ie{1,...,n}, 4 1ig dne Y.

™
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domain D, V(M) = V( M') and, for every ;Sﬁﬁ, r= I (r) is the restric-
- n .
tion of r's I'(r) to D . In order to prove that M is anelementary submo

del of M', we have to prove, by Proposition 4.1, that

(9.2) V( M ‘,ExiB[dl,...,dh]) = qt({ V(M ', B[dl,...,di_l,d,di+l,. s
dn])/dsD})

for every neN, Be En,asé, ie{1,....,n}, dl,...,dne D.

Now, if dl,....,dne D then there exists jeM such that dl,...,dnslxj.

Moreover,

v( M',qxi s[dl,...,dn]) = q'(8(B ,d,i,dl,...,dn))=

q'({ £(d)eV'/deX(R ,d,i,dl,...,dn)})

where, by construction, X( B,a,i,dl,....,dn) is a subset of Xj+l and,

therefore, of D. Suppose that agﬁ then q' is increasing and we have that
VO y tyax, Blay,...0d ] et ([£(d)e VI/aeD')) 2
q'({ f£(d)e V'/deD})z q'({f(d)e V'/d € xj+1}) >

q'( {f(d)e V'/deX(B,q,1,d ..,dn)}) = V(M ',axi B[dl,....,d D)

1 n

This proves the validity of (9.2). In the same manner one proceeds if
qeU.

Proposition 9.2 (Lowenheim-Skolem Theorem) Let V = (V,I) be a valuation
structure with definable quantifiers and T :L + V a V-system of axioms
with an infinite completely valued model ¥ . Then, for every cardi-
nal y3|Z|+ p( M ), there exists a completely valued model Mt of T of
cardinality vy . If M is with classical equality, then ¥ ' is with

classical equality, too.

Proof. Let I be a set and I a wultrafilter on I such that the cardina-
lity of the ultrapower DI/I is greater than vy . Let M” the ultrapower
of M via I . Then from Proposition 8.3 it follows that M* is a model
of T .

Let X be a subset of Mﬁbf cardinality y , then Proposition 9.1 assu-
res that there exists an elementary submodel of Mkbf cardinality vy con
taining X. This is the desired model.

Recall that even in Chang and Keisler's continuous logic [2] a ultra
product concept is given and, consequently, a Lowenheim-Skolem theorem
is proved. Buft, is continuous logic, we are forced to assume that con-

nectives and gquantifiers are continuous with respect to a suitable Hau-
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sdorff topology. This excludes, for example, the Lindenbaum or the

Brouwerian algebras as valuation structures. In this sense Proposition

9.2 is more general even if Chang and Keisler's result assures that

V({ M')=V( ¥ ) and not merely that V( M') is an elementary extension of

v( M ).
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